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Abstract

The momentum distributions of high altitude cosmic ray particles from
the AMS, the CAPRICE and the MASS Collaboration are analyzed using
the lognormal distribution. The average momentum is found to be the same,
P0 = 2.225 ± 0.072 GeV/c, for e±, µ−, p and 4He/ nucleon. This property
implies that the particles are accelerated through equipartition of momentum
once trapped by the geomagnetic fields in the interstellar space to form cosmic
plasmas. The plasma temperature estimated from P0 is 218± 18 MeV. Its dis-
tance to the experimental setup is ∼ 14 km according to the muon lifetime, so
that these particles originate at the top of the atmosphere near the detectors.
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1 Introduction

The characteristic feature of the energy spectrum of cosmic ray particles is the knee,
i.e. break of the power law E−γ predicted by the Fermi mechanism for cosmic ray
particle production [1,2]. In a recent satellite experiment of high statistics, the AMS
Collaboration reported the spectral index γp = 2.78± 0.02 for protons of momentum
in a range from 10 to 200 GeV/c [3] and about the same for 4He [4]. Indeed, we shall
see that the shape of these two distributions is actually very similar. Whereas for
electrons and positrons [5] the shape of the spectrum is quite different, the maximum
being much more pronounced and the width much narrower [6]. The existence of a
maximum in the energy spectrum rules out the power law behavior in the lower en-
ergy region. It is a challenge to interpret the spectrum of these cosmic ray particles in
the entire energy range, including the region of the maximum of distribution. As the
log plots are similar to parabolas, therefore it is appropriate to describe the spectra
with lognormal distributions.

As the production mechanism of electrons and positrons is quite different from
that of protons, the determination of their origin requires a knowledge of dynami-
cal properties of their production. An attempt is therefore made to investigate the
production of cosmic ray particles by analyzing their momentum distributions with a
lognormal distribution (Sect. 2), i.e. a Gaussian distribution in terms of the random
kinematic variable Log P, which represents the invariant phase-space of the particle
under consideration. This amounts to assume that the production process is stochas-
tic, just like the partition temperature model of Chou, Yang and Yen [7], in view
of the complexity of the acceleration of cosmic ray particles, which may take place
in various ways, besides the Fermi mechanism. We then estimate the average mo-
mentum of the spectrum to investigate the production property. The properties of
the lognormal distribution applied to the particle production will be discussed in the
Appendix.

The average momentum < P > thus estimated will be tested by a method based on
the dependence of < P > on the cut-offs on the momentum range of measurement.
The behavior of < P >cut thus estimated is found to follow an exponential law of
probability. In this way, we find about the same < P > for protons and 4He/nucleon
(Sect. 3), as well as for electrons and positrons (Sect. 4). This property holds also for
muons and electrons of high altitude balloon experiments at different time and differ-
ent location of the CAPRICE Collaboration [8] (Sect. 5). Furthermore, the muons
from different altitudes are found to have also about the same average momentum
Sect. 6).

Therefore the equipartition of momentum holds for the production these cosmic
ray particles measured of the AMS Collaboration [1-3] and the CAPRICE Collabo-
ration [8], the mean value being P0 = 2.232± 0.098 GeV/c. The acceleration process
takes place when the charged particles are trapped inside a plasma formed by the
electromagnetic fields in the interstellar space through equipartition of momentum
for the trapped particles (Sect. 6).
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Remarks will be made on the universality of the average momentum of particles
from cosmic ray plasmas. Il allows to determine the characteristics of the plasma:
the temperature ∼ 217 Mev comparable to the critical temperature of quark-gluon
plasma. It is a very hot plasma, like a heat sink to establish momentum equipartition
of particles enclosed inside the plasma. The plasma is ∼ 14 km above the setups
of the AMS and CAPRICE experiments according to the lifetime of the observed
muons(Sect. 6), indicating that the muons, therefore the pions, originate at the top
of the atmosphere.

2 Protons

Consider first the protons as measured by the AMS Collaboration [3] at an altitude
of 350 to 390 km, corresponding to 3.5 g/cm2 residual atmosphere, with ∼ 107 events
covering a wide range of kinetic energy from 0.1 to 200 GeV. The momentum distribu-
tion according to their data is shown in Fig. 1. The curve represents a least-squares
fit with a lognormal distribution in terms of the invariant phase space of the particle
denoted by

ζ = Log P (GeV/c), (1)

so that
dn

dP
= Ne−(ζ+ζ∗)2/2L. (2)

The parameters are ζ∗, the shift of the maximum and L, the width of the distribution,
N being the normalization. The properties of this distribution will be discussed
in the Appendix. We use common logarithms for the fit and find, N in units of
(m2sec sr MeV )−1,

ζ∗p = 1.046± 0.056, Lp = 0.379± 0.010, Np = 7.11± 1.11.

The average momentum computed according to the fit yields

< P >p= 2.316± 0.022 GeV/c. (3)

and the standard deviation
σp = 4.980 GeV/c.

A comparison with the data indicates that, in general, the fit is rather good up
to P < 50.4 GeV/c, far away from the average < P >, including ∼ 99.85 percent of
the data.

As the tail of the lognormal distribution is higher than in the case of Gaussian
distribution, we have to investigate its effect on the estimation of < P > by cutting
off successively the momentum range. The values of < P >cut thus obtained for
P < Pcut are shown by triangles in Fig. 2. We see a drastic drop (filled triangles) to
a minimum around Pcut ∼ 4.89GeV/c, then a gradual rise (open triangles) to reach a
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plateau. Leaving aside the falling part of points and limiting ourselves to the rising
part of data with Pcut > 5 GeV/c, we find its behavior following an exponential law
of Poisson, namely

< P >cut= C(1− e−cPcut). (4)

as shown by the curve with

cp = 0.243± 0.013 (GeV/c)−1, Cp = 2.113± 0.021 GeV/c.

We see that < P >cut= 0 for Pcut = 0 as should be and that its rise at a rate
4 < P >cut /4Pcut ' 8.5 to approach asymptotically a plateau at the ordinate given
by Cp corresponding to the exact value for the average of momentum in agreement
with the estimate (3) without cuts.

We note in passing that this method of cutoff will be useful for a reliable estima-
tion of the average momentum, when the measurements cover only a limited range of
momentum as in the case of positrons to be discussed later in Sect. 4.

3 Helium

Next, let us turn to the primary 4He of the AMS experiment [4]. We reproduce in
Fig. 3 their distribution as a function of the momentum measured by the rigidity (in
GV) as reported in [4]. A least-squares fit according to the lognormal distribution
(2) is shown by the solid curve in the figure with

ζ∗He = 0.460± 0.026, LHe = 0.315± 0.016, NHe = 106.88± 5.80.

N being in units of (m2 sec sr GeV/c)−1. This fit is comparable to the proton case
as presented in the previous section.

From the momentum of 4He measured by the AMS magnetic spectrometer, we
find its average per nucleon

< P >He=
2

4
(4.558± 0.021) = 2.279± 0.010 (GeV/c)/nucleon, (5)

just like the protons (3) within fitting errors and the standard deviation per nucleon,
so is the standard deviation

σHe = 2.248 GeV/c.

The effect of cutoffs on the momentum range is shown by circles in Fig. 2. The
plot resembles that for protons (in triangles) in the same figure, namely an abrupt
drop (in filled circles) to a minimum, then a rise (open circles) as is described by an
exponential law (4) with

cHe = 0.196± 0.0103 (GeV/c)−1, CHe = 4.473± 0.008 GeV/c. (6)
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Note the ratio of coefficients C for protons and helium

CHe

Cp

= 2.117± 0.017,

is in agreement with that of the nuclear charge Z to the atomic number A for He and
p. This indicates that the average momentum of He per nucleon is the same as that
of proton. As for the flux ratio, we find it by integrating the distribution (2) to
get

4He

p
=

258.0± 8.9

4645± 423
= 0.056± 0.006, (7)

about 6 per cent.

4 Electrons and positrons

The dynamical properties of electrons and positrons present special interest, as far as
their origin is concerned. Unlike the protons, they are not from the primary produc-
tion. They are rather related to other particles, namely π0 → γ+γ with γ → e+ +e−,
so that < P >e=

1
4

< P >π with < P >π ' 2
3

< P >p ( cf. Appendix).
On the other hand, electrons, positrons and protons may be accelerated by geo-

magnetic field in the interstellar space. Furthermore, as charged particles, they may
interact among themselves by Coulomb force to reach an equilibrium characterized
by the same < P >, as is required by the equipartition of momentum.

The electrons and the positrons measured by the AMS Collaboration [5] at an
altitude 320 to 390 km in the range P = 0.2 to 40 GeV/c for electrons (in circles)
and 0.3 to 3 GeV/c for positrons (in nablas) are reproduced in Fig. 4. The curves
are fits according to the lognormal distribution (2).

Consider first the electrons, the parameters (N in (m2 sec sr MeV/c)−1)

ζ∗e− = 0.124± 0.025, Le− = 0.135± 0.010, Ne− = 0.0217± 0.018.

We find for the average momentum

< P >e−= 2.153± 0.118, GeV/c, (8)

and the standard deviation
σe = 2.251 GeV/c,

both comparable to the case of protons (3), despite the striking difference in the
shape of their spectrum, as indicated by the difference of their width parameter:
Le−/Lp = 2.81± 0.10.

The averages < P >cut with cutoffs on P are shown by circles in Fig. 5. The fit is
shown by the dashed line in the figure with

ce− = 1.113± 0.026 (GeV/c)−1, Ce− = 1.861± 0.082 GeV/c.
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Note that the asymptotic value Ce− is close to the average momentum (8).
Next, let us turn to the positrons as shown by the triangles in Fig. 4. Here, the

data cover only a limited range from P = 0.2 to 3 GeV/c. The curve shows the fit
with

ζ∗e+ = 0.413± 0.154, Le+ = 0.233± 0.108, Ne+ ∼ 0.041,

the estimate of the normalization coefficient N is uncertain as the error is very large.
None-the-less, we may estimate a lower limit of the average momentum and get:

< P >e+ Â 1.313± 0.078 GeV/c. (9)

The values of < P >cut for cutoffs on P are shown by the triangles in Fig. 5. The
solid curve represents the exponential rise according to (5), with

ce+ = 0.673± 0.0152 (GeV/c)−1, Ce+ = 1.787± 0.242 GeV/c.

It is interesting to note that Ce+ ' Ce− , whereas ce+ ¿ ce− , because of annihi-
lations with electrons and different cuts by the magnetic field of the earth, and that
the flux of e− in the same range P = 0.2 to 3 GeV/c is found to be about one order
of magnitude larger than that of e+ as is shown in Fig. (4). Now, if we refit the e−

data in the same range as e+, i.e. filled circles in the figure, we then get

c′e− = 2.011± 0.207 (GeV/c)−1, C′
e− = 1.781± 0.014 GeV/c.

We find the same value C for both e+ and e−, namely Ce+ = C′
e− . This gives

strong indication that the average momentum of positrons is essentially the same as
those of electrons, protons and 4He per nucleon , if there were no loss by annihilations,
no cuts by the magnetic field of the earth.

5 Muons

We now turn to the muons and the electrons of cosmic rays at high altitude corre-
sponding to 3.8 g/cm2 of the balloon-flight experiments by the CAPRICE Collab-
oration [8] as shown in Fig. 6. As the muons arise mainly from the β-decays of
π± → µ± + ν, their spectrum is similar to that of γ′s from the decays of π0 → γ + γ.
Whereas the electrons are from γ → e+ + e−. Therefore, there is a correlation of 2
to 1 ratio between the widths of the muon and the electron spectrum as is known in
the case of particle production by e+e− interactions (cf. Appendix).

The momentum spectrum of µ− (in circles) and e− (in triangles) are shown in
Fig. 6. The curves represent the least-squares fits with the lognormal distributions
Eq. (2). The parameters for µ− are (N in (m2 sec sr GeV/c)−1)

ζ∗µ = 1.133± 0.116, Lµ = 0.330± 0.028, Nµ = (3.085± 0.691)/103,
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leading to
< P >µ= 2.163± 0.205 GeV/c, (10)

and
σµ = 3.881 GeV/c.

Whereas for the electrons

ζ∗e = 0.162± 0.028, Le = 0.140± 0.007, Ne = 14.81± 0.73

and
< P >e= 2.307± 0.004 GeV/c. (11)

with
σe = 2.038 GeV/c.

The shapes of these two distributions are quite different. However, we find

Lµ

Le

= 2.359± 0.232,

consistent with 2 within about one and a half standard deviations as expected from
the property of the width parameter as mentioned above. On the other hand, we find

< P >µ'< P >e . (12)

within ∼ 1/2 standard deviation, in contradistinction with < P >µ= 2 < P >e

as expected from π production by high energy interactions, see Appendix. In this
case the ratio of numbers of electrons and muons from π0 and π− decays should be
ne/nµ = 2/1.

However, here, we find by integrating the distributions in Fig. 6

ne

nµ

= 3.961± 0.321, (13)

significantly larger by a factor of ∼ 2.
Indeed, the excess of electrons observed in this experiment may arise from the

decays of µ− → e−+ν + ν̄ during the lapse of time between the production of π’s and
the trapping by the plasma of the decay electrons of µ’s from π → µ + ν decays. Let
f denote the fraction of these µ decays into electrons, then ne/nµ = (2 + f)/(1− f)
leading to

f = 0.395± 0.321.

As muons are short lived particles, their distance to the experimental setup should
be within their decay mean-free-path, namely (γcτ)µ ' 14 km, γ being the Lorentz
factor of muons γµ =< P >µ /mµ = 20.600±1, 952, so that they are produced at the
top of the atmosphere.

It is remarkable that the average momentum of electrons of this experiment (11) is
comparable with that of the AMS experiment (8) as discussed in the previous section,
despite the year and the location of these two experiments are quite different.
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6 Momentum equipartition in Cosmic Ray plasma

We have seen in the previous sections that the average momentum of cosmic ray
particles at high altitude of 390 km is practically the same for leptons, protons and
4He/nucleon. This property is in contrast with that of particle production by high
energy interactions as discussed in the Appendix. We have to investigate if there is
any altitude effect to cause this difference.

For this purpose, we analyze the negative muons at various altitudes of another
balloon-flight experiment in 1991 by the MASS Collaboration [9]. Their data are
shown in Fig. 7, the errors bars being imperceptible. The curves represent the
lognormal fits with Eq. (2). The parameters are listed in Table I,

Table I- Parameters of lognormal fits to muon spectra

x(g/cm3) ζ∗ L N < P >(GeV/c)
25 - 47 0.674 ± 0.086 0.253 ± 0.020 (1.83 ± 0.07)/104 1.910 ± 0.012
48 - 83 0.700 ± 0.156 0.252 ± 0.036 (1.12 ± 0.13)/103 1.701 ± 0.406
83 - 106 0.510 ± 0.079 0.213 ± 0.018 (1.12 ± 0.30)/102 1.931 ± 0.484
106 - 164 0.560 ± 0.107 0.231 ± 0.025 (1.42 ± 0.13)/102 2.003 ± 0.493
164 - 255 0.511 ± 0.062 0.265 ± 0.037 (1.09 ± 0.29)102 2.647 ± 0.265

A comparison of the parameters ζ∗ and L indicates that they are all the same
within fitting errors, except the normalization coefficients N. These parameters are
comparable with those of muons at a much higher altitude, about 3.8 g/cm3, of the
CAPRICE experiment analyzed in the previous section. The same property holds for
the average momentum in the last column of the Table, indicating no altitude effect
on the muon momentum distributions we have analyzed.

However, their intensities vary with the altitude, as is seen from the values of N.
As for the flux, we may integrate the momentum distributions according to the fits.
The results thus obtained are shown in semi-log plot of Fig. 8. The curve is a linear
fit assuming the muon flux to be proportional to the atmosphere above the setup of
the experiment

nµ =
x

λ
. (14)

We find for the attenuation mean-free-path

λ = 7205± 167 g/cm3,

very large indeed, in contrast with the mean-free-path ∼ 60 g/cm3 for pion production
by high energy nucleon-nucleon collisions. This indicates that the muons, therefore
the pions, are produced in the atmosphere.

Finally, a comparison of the values of < P > in the Table indicates that they
are practically all the same within fitting errors, the mean value 2.044± 0.332 being
comparable with the average momentum of e±, p and 4He/nucleon mentioned in the
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previous sections.
We therefore find an important dynamical property of equipartition of momentum

for the acceleration charged cosmic ray particles of the Fermi model [1], namely the
acceleration proceeds via electromagnetic interaction of long range with the wandering
geomagnetic field in the interstellar space to form a plasma so that once the parti-
cles trapped inside, they may gain energy from that of the geomagnetic field through
equipartion of momentum, then escape the plasma and continue their motion along
the lines of force of the geomagnetic field in the direction of the propagation of the
longitudinal waves of the geomagnetic field towards the earth in the form of cosmic
ray jets.

As the transverse momentum of particles in a jet is negligible, their average mo-
mentum is actually given by < P >, which represents the partition temperature of
the Chou, Yang and Yen model [7].

7 Conclusions

We have used the lognormal distribution Eq.(2) to analyze the momentum spectrum
of high altitude cosmic ray leptons, protons and 4He of the satellite experiment by
the AMS Collaboration [3-5] as well as electrons and muons of the balloon flight
experiment by the CAPRICE Collaboration [8]. The average momentum of e± and
µ− is found to be about the same for p and 4He/nucleon, their mean value denoted
by subscript zero being

P0 = 2.225± 0.072 GeV/c. (15)

Whereas the average momentum of negative muons at various altitudes between 25
and 255 g/cm3 of the MASS Collaboration [9] is found to be consistent with this
mean value P0.

This property is of fundamental importance for the production of high altitude
cosmic ray particles. As it is different from that by high energy accelerator. Indeed,
in the latter case, the average momentum of electrons, is very different from that of
protons, as they arise from decays of π0 → γ+γ followed by γ → e++e−, as discussed
in the Appendix. On the contrary, the dynamical property according to (15) implies
equipartition of momentum for all these cosmic ray particles observed in the two dif-
ferent experiments. As they are charged particles, it is through their electromagnetic
interaction of long range force with the geomagnetic fields in the interstellar space
that they form altogether cosmic ray plasmas to establish momentum equipartition
among particles once trapped inside the plasma.

This property (15) is universal. It holds also for antiprotons and protons as well,
as has been found in another high altitude balloon flight experiment at different
place and different time, the BESS Collaboration [10], namely < P >= 2.184± 0.056
GeV/c for protons and 2.666 ± 0.218 GeV/c for antiprotons, as reported elsewhere
[11].
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We therefore have the strong support that the average momentum P0 = 2.225
GeV/c is characteristic of particle production by cosmic ray plasmas.

As regards the properties of the plasma, we note that its temperature T may be
estimated from the energy dependence of the average momentum, just like the average
multiplicity, namely < P >∼ √

Ecm according to the Fermi-Landau law [12,13]. The
universality of this remarkable law [14a] allow us to estimate the temperature of the
cosmic ray plasma knowing the < P >p of protons and the equilibrium temperature
of e+e− → hadrons at Ecm = 29 GeV as reported before [14b] and < P >p as listed
in the Table of the Appendix, . We find by scaling

T = (0.196± 0.007)

√
2.225± 0.072

1.806± 0.062
= 0.218± 0.018 GeV (16)

comparable to the critical temperature ∼ 250 MeV of quark-gluon plasma. It is a
very hot plasma indeed. It severs as a huge reservoir of great heat capacity for the
latent energy from the wandering geomagnetic fields for the acceleration of charged
particles once trapped inside the plasma in order to establish equipartition of mo-
mentum among the trapped particles.

As the muons are short lived, the time for the equipartition process should be
accomplished within the lifetime of muons, namely (γ cτ)µ = 46.51 µsec, where the
Lorentz factor is given by the reduced momentum of muons: γµ = P0/mµ. There-
fore, in the muon experiment, the distance between the plasma and the experimental
setup should not exceed the corresponding decay length, namely about 14 km, in
other words, these muons are originated in the atmosphere. Therefore, the pions
which decay into muons are created in the vicinity of the detector ‘at the top of the
atmosphere.

But most of these muons at an altitude ∼ 40 kms will not reach sea-level, as they
are already absorbed by the atmosphere during their traversal towards the Earth.
Because their minimum ionization for the air, about 2.5 GeV, exceeds their energy
2.166±0.205 they have gained from the heat sink through equipartition of momentum.
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8 Appendix

We have used the lognormal distribution, Eq. (2), to analyze the momentum distri-
butions of Cosmic Ray particles. We now discuss the properties of the parameters ζ∗

and L, characteristics of the distribution.
For this purpose, we consider particles produced by mass-determined inclusive

e+e− collisions at Ecm = 29 GeV of the TPC Collaboration [15] and the HRS Col-
laboration [16]. The momentum momentum distributions of their measurements are
shown in Fig. 9 and 10. The curves represent the least-squares fits with the lognormal
distribution Eq. (2). The parameters ζ∗ and L, together with the estimates of the
average momentum < P > (in GeV/c) are listed in the following Table.

Table II- Parameters of lognormal fits

ζ∗ L N < P >
π+π− 0.642 ± 0.029 0.206 ± 0.009 1251 ± 54 1.231 ±0.008
K+K− 0.286 ± 0.069 0.192 ± 0.031 0.79 ± 0.74 2.186 ± 0.008

p 0.406 ± 0.237 0.204 ± 0.069 0.12 ± 0.01 1.806 ± 0.062
γ 0.910 ± 0.072 0.218 ± 0.015 28.75 ± 4.59 0.859 ± 0.035
e -0.007 ± 0.010 0.108 ± 0.004 4.82 ± 0.05 2.80 ± 0.018
ρ0 -0.282 ± 0.036 0.100 ± 0.012 0.328 ± 0.022 3.362 ± 0.158
η -0.387 ± 0.126 0.051 ± 0.021 0.167 ± 0.049 3.564 ± 0.414

K+∗K−∗ -0.232 ± 0.067 0.085 ± 0.015 0.065 ± 0.008 3.117 ± 0.138

Consider first the width parameter L for pions, kaons and protons, we find prac-
tically the same value. However, the estimates of their average momentum are quite
different, reflecting the difference of their quark constitution. Indeed, we find for π
and p

< P >π

< P >p

= 0.686± 0.024,

consistent with 2/3, which is the ratio of quark contents of π and p. On the other
hand, from the pairs of π and K, we get

< P >π − < P >K=
1

2
(0.897± 0.144) = 0.447± 0.072 GeV,

comparable to the mass difference between the valence quarks s and u (or d).
Consider next the case of a resonance, e.g. a → b + c. As the momentum distri-

bution of the particle a is given by the convolution of those of the decay particles b
and c, we get the following relationship

1

La

=
1

Lb

+
1

Lc

. (A-1)
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Therefore, for ρ0 → π+ + π−, we expect L% = Lπ/2, in agreement with the exper-
imental values listed in the Table.

Likewise, for K∗(892) → K + π, we find by the above relationship (A-1): LK∗ =
0.099±0.018 which agrees well with the experimental value 0.085±0.015 within about
1/4 standard deviation.

Turn next to the γ’s, which are from the decays of π0 → γ + γ. Experimentally,
however, both γ’s are recorded as independent particles, no account being taken of
their origin from π0 decays. Consequently, their spectrum resembles that of π, and,
instead of Lγ = Lπ/2 we find rather Lγ ' Lπ and < P >γÂ 1

2
< P >π, as should be,

probably due to the solid angle bias in the forward direction.
We therefore have the feeling that actually Lγ = Lπ/2, i.e., 0.109 ± 0.008. This

agrees with Lγ = 2Lη = 0.102 ± 0.042, as the η’s are identified according to their
decays: η → γ + γ.

Finally, for electrons, as they arise from the pair production of γ → e+ + e−, we
expect Le = Lγ/2 as has been found experimentally.

We now investigate the energy dependence of the average momentum < P > for
π, K and p. We have analyzed their momentum distributions at Ecm = 10, 29 and
91.2 GeV of the ARGUS Collaboration [17], the TPC and MARK II Collaborations
[15,18] and the ALEPH [19] , DELPHI [20], L3 [21] and OPAL [22] Collaborations,
respectively. The values of < P > thus obtained are shown in Fig. 11, the plots of
momentum distributions being omitted for simplicity.

As the average momentum is related to the multiplicity, which depends on the
mass of the particle under consideration. Therefore its energy dependence follows a
power law according to the statistical model of Fermi [12] and Landau [13]. Further-
more, assuming a Poisson distribution for the mass dependance, we may tentatively
write

< P(m, Ecm) >= K(Ecm)α m

µ
e−m/µ. (A-2)

where α and µ are two parameters and K a constant.
If we fit these three sets of data with (A-2) as shown in Fig. 11, we find the values

of 1/µ (in (GeV )−1) increasing very slowly with energy as shown by the triangles in
Fig. 12; the curve being a power law fit with

1

µ
= (0.991± 0.013)(Ecm)(0.150±0.003).

As the mean value of the estimates of µ as shown in Fig. 12, is 0.533± 0.0526 GeV,
which turns out to be the same as that of the mass of the particles π, K and p, and
as the parameter µ is not critical for the fit with (A-2), we therefore set

µ =
(mπ + mK + mp)

3
= 0.525 GeV

and redo the fits to estimate the parameter α and the factor K(Ecm)α of Eq.(A-2),
the values thus obtained are presented by circles in Fig. 10. The curve represents the
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fit using Eq. (A-2) with

α = 0.716± 0.050, K = 0.511± 0.026. (A-3)

We now try an overall fit with Eq.(A-2) using the parameters thus determined as
shown by the solid curves in Fig. 11. A comparison with the data indicates that the
fit is very satisfactory.

It is interesting to note that α ' 3/4 so that the energy dependence of the av-
erage momentum behaves like the entropy as is expected from the viewpoint of the
statistical model of particle production . On the other hand, at a given energy of
production, the ratio of < P > for protons and pions leads to

< P >p

< P >π

=
mp

mπ

e−(mp−mπ)/µ = 1.499 ' 3

2
.

equal to the ratio of quark contents of the proton and the pion, as mentioned before.
These properties of fundamental importance as revealed by the average momentum

computed according to lognormal distribution justify, a posteriori, the relationship
(A-2) for the mass and the energy dependence of the average momentum and the
description of the momentum spectrum with the lognormal distribution (2) in terms
of the invariant phase-space of the particle under consideration.

As regards the parameter ζ∗, it represents the shift of the maximum of the mo-
mentum distribution in terms of Log(P). It has the property of scaling for a canonical
transformation of (2) by substituting:

P → α · P, (A-4)

with
α = antiLog(ζ∗),

so that the lognormal distribution Eq.(2) we have used to analyze the momentum
spectra may be rewritten as follows

dn

dP
= Ne−(Log[α.P ])2/2L. (A-5)

In this form,the moments of P are given by integrating over ζ = Log(P)

Mn = 2.303N
∫

10(α+n)ζ dn

dP
dζ.

Finally, we note that for the kinematic variable of the lognormal distribution, if
instead of the momentum, use is made of the kinetic energy as customarily adopted
in the cosmic ray experiments, namely, Log P → Log(K + m), the fits become less
good for particles heavier than kaons.
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Figure Captions

[1] Momentum spectrum of cosmic ray protons at 350 - 390 km altitude,
AMS Collaboration [3-5]. The curve represents a least-squares fit with
the lognormal distribution (2). The average momentum of protons is
2.316± 0.022 GeV/c.

[2] Plots of the average momentum vs. the cut-off on the momentum range
for cosmic ray protons and 4He of the AMS Collaboration [3-5] the curves
represent an exponential probability law, Eq. (4), leading asymptotically
to the exact value of < P > = 2.113 ± 0.021 GeV/c and 4.473 ± 0.008
GeV/c for protons and 4He, respectively.

[3] Momentum spectrum of cosmic ray 4He of the AMS Collaboration [4]. The
curve represents a least-squares fit with the lognormal distribution (2).
The average momentum of 4He measured by the magnetic spectrometer
is estimated to be 4.558± 0.0221 GeV/c.

[4] Momentum spectrum of cosmic ray electrons and positrons of the AMS
Collaboration [5]. The curves represent least-squares fits with the lognor-
mal distribution (2). The average momentum of electrons is 2.153±0.118
GeV/c and roughly > 1.313± 0.018 GeV/c for positrons.

[5] Plots of the average momentum vs. the cut-off on the momentum range
for cosmic ray electrons and positrons of the AMS Collaboration [5] the
curves in dotted lines represent an exponential probability law, Eq. (4).
The estimates of < P > according to the plateau are 2.013±0.227 GeV/c
for electrons and 1.787 ± 0.014 GeV/c for positrons. The solid curve is
another fit to electrons with P < 3 GeV/c (in filled circles) as in the case
of positrons, leading to 1.781± 0.014 GeV/c the same as for positrons.

[6] Momentum spectrum of cosmic ray electrons and muons of the CAPRICE
Collaboration [8]. The curves are fits with the lognormal distribution Eq.
(2). The average momentum is 2.307± 0.004 GeV/c for the electrons and
2.163± 0.205 GeV/c for the muons.

[7] Log plot of momentum distributions of negative muons at various altitudes
between 25 and 255 g/cm3 of the MASS Collaboration [9]. The curves
are lognormal fits with Eq. (2). The parameters and the estimates of the
average momentum are listed in Table I.

[8] Plot of the negative muon flux (in particles/(cm2ssr)) vs. altitude x
(in g/cm3) of the MASS Collaboration [9]. The solid curve represents a
linear fit nµ = x/(7205± 167) , see text.
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[9] Momentum distributions of π+π−, γ, e, K+K− from e+e− collisions at
Ecm = 29 GeV, TPC Collaboration [14]. The curves are least-squares
fits with the lognormal distribution Eq. (2). The parameters and the
estimates of < P > are listed in Table II of Appendix.

[10] Momentum distributions of ρ0, η, and K+∗K−∗ from e+e− collisions at
Ecm = 29 GeV, HRS Collaboration [15]. The curves are least-squares
fits with the lognormal distribution Eq. (2). For the parameters and the
average momentum, see the text in Appendix.

[11] Plots of the average momentum (in GeV/c) of π±, K±, p against the sec-
ondary mass m (in GeV) for e+e− collisions at

√
s = 10, 29 and 91.2 GeV‘

of ARGUS, PEP and LEP experiments [17-22]. The curves represent an
overall fit according to (18) with 2 free-parameters, µ = 0.533 GeV and
α = 0.716 for the mass and the energy dependence of the computed
average momentum, see Appendix.

[12] Plots of the parameter 1/µ (in triangles) and the estimate K(Ecm)α (in
circles) for < P > as expressed by (18), as a function of the energy Ecm

(in GeV) of e+e− collisions for π, K and p. The curves are power-law fits,
see text (Appendix).
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